U.S. flag An official website of the United States government.

dot gov icon Official websites use .gov

A .gov website belongs to an official government organization in the United States.

https icon Secure websites use HTTPS

A small lock or https:// means you’ve safely connected to a .gov website. Share sensitive information only on official, secure websites.

The Coriolis Effect

Currents Tutorial

Atmospheric circulation sans earth rotation.
If the Earth did not rotate on its axis, the atmosphere would only circulate between the poles and the equator in a simple back-and-forth pattern. Click the image for a larger view.
Coriolis effect on atmospheric circulation.
Because the Earth rotates on its axis, circulating air is deflected toward the right in the Northern Hemisphere and toward the left in the Southern Hemisphere. This deflection is called the Coriolis effect. Click the image for a larger view.

Coastal currents are affected by local winds. Surface ocean currents, which occur on the open ocean, are driven by a complex global wind system. To understand the effects of winds on ocean currents, one first needs to understand the Coriolis force and the Ekman spiral.

If the Earth did not rotate and remained stationary, the atmosphere would circulate between the poles (high pressure areas) and the equator (a low pressure area) in a simple back-and-forth pattern. But because the Earth rotates, circulating air is deflected. Instead of circulating in a straight pattern, the air deflects toward the right in the Northern Hemisphere and toward the left in the Southern Hemisphere, resulting in curved paths. This deflection is called the Coriolis effect. It is named after the French mathematician Gaspard Gustave de Coriolis (1792-1843), who studied the transfer of energy in rotating systems like waterwheels. (Ross, 1995).