U.S. flag An official website of the United States government.

dot gov icon Official websites use .gov

A .gov website belongs to an official government organization in the United States.

https icon Secure websites use HTTPS

A small lock or https:// means you’ve safely connected to a .gov website. Share sensitive information only on official, secure websites.

What is the carbon cycle?

The carbon cycle is nature's way of recycling carbon atoms. Carbon is the foundation for all life on Earth.

VIDEO: The carbon cycle describes the process in which carbon atoms continually travel from the atmosphere to the Earth and then back into the atmosphere. Human activities have a tremendous impact on this cycle. Burning fossil fuels, changing land use, and using limestone to make concrete all transfer massive quantities of carbon into the atmosphere. As a result, the amount of carbon dioxide in the atmosphere is rapidly rising — it is now greater than at any time in the last 3.6 million years. Transcript

mangroves
Blue Carbon

Blue carbon is the term for carbon captured by the world's ocean and coastal ecosystems. Sea grasses, mangroves, salt marshes, and other systems along our coast are very efficient in storing CO2. These areas also absorb and store carbon at a much faster rate than other areas, such as forests, and can continue to do so for millions of years. The carbon found in coastal soil is often thousands of years old. When these systems are damaged or disrupted by human activity, an enormous amount of carbon is emitted back into the atmosphere, contributing to climate change.

Carbon is the foundation of all life on Earth, required to form complex molecules like proteins and DNA. This element is also found in our atmosphere in the form of carbon dioxide (CO2). Carbon helps to regulate the Earth’s temperature, makes all life possible, is a key ingredient in the food that sustains us, and provides a major source of the energy to fuel our global economy.

The carbon cycle describes the process in which carbon atoms continually travel from the atmosphere to the Earth and then back into the atmosphere. Since our planet and its atmosphere form a closed environment, the amount of carbon in this system does not change. Where the carbon is located — in the atmosphere or on Earth — is constantly in flux.

On Earth, most carbon is stored in rocks and sediments, while the rest is located in the ocean, atmosphere, and in living organisms. These are the reservoirs, or sinks, through which carbon cycles.

Carbon is released back into the atmosphere when organisms die, volcanoes erupt, fires blaze, fossil fuels are burned, and through a variety of other mechanisms.

In the case of the ocean, carbon is continually exchanged between the ocean’s surface waters and the atmosphere, or is stored for long periods of time in the ocean depths.

Humans play a major role in the carbon cycle through activities such as the burning of fossil fuels or land development. As a result, the amount of carbon dioxide in the atmosphere is rapidly rising; it is already considerably greater than at any time in the last 3.6 million years.

Video Transcript

What is the carbon cycle? Carbon is the chemical backbone of all life on Earth. All of the carbon we currently have on Earth is the same amount we have always had. When new life is formed, carbon forms key molecules like protein and DNA. It's also found in our atmosphere in the form of carbon dioxide or CO2. The carbon cycle is nature's way of reusing carbon atoms, which travel from the atmosphere into organisms in the Earth and then back into the atmosphere over and over again. Most carbon is stored in rocks and sediments, while the rest is stored in the ocean, atmosphere, and living organisms. These are the reservoirs, or sinks, through which carbon cycles. The ocean is a giant carbon sink that absorbs carbon. Marine organisms from marsh plants to fish, from seaweed to birds, also produce carbon through living and dying. Over millions of years, dead organisms can become fossil fuels. When humans burn these fuels for energy, vast amounts of carbon dioxide are released back into the atmosphere. This excess carbon dioxide changes our climate — increasing global temperatures, causing ocean acidification, and disrupting the planet’s ecosystems.