Meeting Outcomes

To explore in a fact-based manner four scientific questions related to the causes of hypoxia:

Question #1: What is the history of total nitrogen flux (and its constituent forms) from the Basin? (Presenter: Don Goolsby)

Question #2: What is the relative role of terrigenous carbon as a driver of hypoxia? (Presenters: Jon Pennock and Don Boesch).

Question #3: What is the relationship of nitrogen inputs (fertilizer, manure, atmospheric) to organic nitrogen soil inventories and nitrogen outputs? (Presenters: Mike Burkart and Don Goolsby).

Question #4: What effect does changes in freshwater flows to the Gulf have on stratification and hypoxia in the Gulf? (Presenter: Nancy Rabalais)

To identify the areas of convergence (where there is general agreement among the scientific community) and identify the essence of disagreements, why the disagreements may be there and what it would take to resolve them.
Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 - 8:15</td>
<td>Participants introduce themselves and clarify meeting outcomes and expectations. “This meeting will be successful if…” Cindy Zook reviews meeting design and groundrules.</td>
</tr>
<tr>
<td>8:15 - 10:00</td>
<td>Presentation and discussion on Question #1: What is the history of total nitrogen flux (and its constituent forms) from the Basin?</td>
</tr>
<tr>
<td>10:00 - 10:15</td>
<td>BREAK</td>
</tr>
<tr>
<td>10:15 - 12:00</td>
<td>Presentation and discussion on Question #2: What is the relative role of terrigenous carbon as a driver of hypoxia?</td>
</tr>
<tr>
<td>12:00 - 12:15</td>
<td>Break (for working lunch).</td>
</tr>
<tr>
<td>12:15 - 2:00</td>
<td>Presentation and discussion on Question #3: What is the relationship of nitrogen inputs (fertilizer, manure, atmospheric) to organic nitrogen soil inventories and nitrogen outputs?</td>
</tr>
<tr>
<td>2:00 - 2:15</td>
<td>BREAK</td>
</tr>
<tr>
<td>2:15 - 4:00</td>
<td>Presentation and discussion on Question #4: What effect does changes in freshwater flows to the Gulf have on stratification and hypoxia in the Gulf?</td>
</tr>
<tr>
<td>4:00 - 4:30</td>
<td>Wrap up - Participants identify insights and observations from the day’s work and discuss next steps and follow-up.</td>
</tr>
</tbody>
</table>
Participant Expectations

This meeting will be successful/worthwhile if…

1. **Joe S-B** - Hear resolution to some of the issues...potential actions.
2. **Jim** - Clarify agreement/disagreement and know what is needed in research.
3. **Doug** - Present problem in Gulf...source of problem.
4. **Victor** - Gain better understanding of causes...natural processes vs. man-induced processes.
5. **Tim** - Agreement on path for solution, shared responsibility and state-directed coordination.
6. **Nancy** - Put aside non-relevant issues and focus on key issues.
7. **Bob** - What are the real issues?
8. **John B** - Make the assessment process more transparent. We need greater role by states in solving problems.
9. **Bruce M** - Clear direction about how to inform farm community.
10. **Jim B** - What will be expected of agriculture?
11. **Mark A** - Understand the issues and reach consensus.
12. **Don G** - Resolution of issues.
13. **Mike B** - Curious about the controversies regarding sources.
15. **Jim L** - Really deal with the 4 questions. Have a focus on what scientific questions are critical and have process to move forward.
16. **Joe E** - Find out what we know and don't know.
17. **Don S** - Stay focused...be fact-based.
18. **Bill H** - Agree on importance of issue. Develop framework for better understanding of science basis.
19. **Jon P** - Stick to scientific issues so we can move forward to policy side.
20. **Don B** - Measurably move beyond questions about sources and move to solution.
21. **Len B** - Manage problem as a system vs. individual issues. Learn the latest about scientists' view.
22. **Jim P** - Common understanding of what carbon and nitrogen are doing down there.
23. **Don P** - Happy if we do all this! Focus on key scientific issues regarding causes.
24. **Tom P** - It's already successful because we have the right "brain power" in the room.
Question #1

What is the history of total nitrogen flux (and its constituent forms) from the Basin?

Agreements

1. DIN has increased.
2. Total nitrogen has increased.
3. Total nitrogen has increased due to increase in DIN.
4. The most significant increase in DIN concentration and flux occurred between 1963-1983.
5. There is no trend in DIN or total nitrogen flux since 1980; it's highly variable depending on discharge.
6. PON has declined since the 1950's.
7. Mississippi River trends mirror trends in other watersheds worldwide (increase in total nitrogen; stabilization in 1980’s and 1990’s).

Follow Up Issues and Actions

1. Include Don Goolsby's latest findings in IA.
2. Add confidence intervals to IA.
Question #2
What is the relative role of terrigenous carbon as a driver of hypoxia?

Agreements

1. The carbon that fuels hypoxia is produced over the shelf waters and sinks primarily in the spring. It is the source of most organic carbon that consumes oxygen in hypoxic zones. (Nancy's research).

2. River-derived nitrogen is the most important, manageable driver of increased organic carbon in the hypoxic zone.

3. Terrigenous carbon is a relatively small factor driving hypoxia (nitrogen-driven carbon production is approximately an order of magnitude greater).

4. Increased carbon production in the environment is consistent with similar systems worldwide.

5. This discussion is irrelevant unless we intend to control the amount of carbon.

Follow Up Issues and Actions

1. Role of terrigenous carbon is not widely understood. Use Don Boesch’s paper (edited) to more adequately explain the role of terrigenous carbon.
Question #3
What is the relationship of nitrogen inputs (fertilizer, manure, atmospheric) to organic nitrogen soil inventories and nitrogen outputs?

Agreements
1. Worldwide, 20% of net human inputs get exported in rivers. The Mississippi follows this pattern.

2. At the basin level, these are the sources of total nitrogen delivered to the Gulf:
 - Agriculture – 65%
 - Municipal and Industrial – 11%
 - Other – 24%
 These results are consistent with Sparrow and Scope analyses.

3. There is tremendous variability of nitrogen loads and forms at the field level based on:
 - Farming systems/management practices
 - Climate
 - Hydrology
 - Soil and other physical characteristics.

4. It is hazardous to scale from basin level to field level and vice versa.

Follow Up Issues and Actions
1. Find better ways of scaling.

2. Find better ways to deal with various agriculture sources of nitrogen (manure, legumes, etc).

3. Find better ways to relate different land uses (forest, agriculture, etc.) to nitrogen loads in streams.

4. Assure IA includes research needs.
Question #4

What effect does changes in freshwater flows to the Gulf have on stratification and hypoxia in the Gulf?

Agreements

1. You have to have both nutrient loading and stratification for Hypoxia.

2. There have been modest changes in total flow as well as the Atchafalaya River diversion. These changes affect both nutrient loading and stratification.

3. We do not have data on the changes in stratification caused by the modest changes in total flow and the Atchafalaya River diversion.

4. Compared to modest changes in flow, there have been 2x-3x changes in nutrient loading since 1900.

5. If we choose to manage hypoxia by changing the flows within the Mississippi River Basin (such as the distribution of flow between the two main distributaries), there will be multiple consequences, not all of which are known. Therefore, we need to improve the scientific basis of decision-making regarding river flow and engineering to meet multiple objectives.

Follow Up Issues and Actions

1. We need to integrate hypoxia into discussions on changes to river management throughout the Basin.
Next Steps for IA

1. Draft IA out for public comment - closes December 20th.
Gulf Hypoxia Science Meeting
December 3, 1999
Session Evaluations Summary

No. of Submissions: (13)

1. Please indicate on the scale below your overall rating of the meeting and your reason for the rating.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2 (1)</th>
<th>3 (1)</th>
<th>4 (4)</th>
<th>5 (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Highly Dissatisfied</td>
<td></td>
<td></td>
<td></td>
<td>Highly Satisfied</td>
</tr>
</tbody>
</table>

Why? Comments:
1. Came to agreements! Cindy did an excellent job bringing focus on points on agreement.
2. We achieved the major objective of the meeting.
3. Great discussion and great facilitation.
4. Excellent job of facilitating meeting and delivering meeting summary in a timely manner.
5. Free exchange of information led rather quickly to consensus. Diversity of interests and backgrounds was excellent. We got rid of the red herrings.
6. Discussed to resolution the items on the agenda. Verbal agreement at least by those who agreed. I suspect silence by some was disagreement.
7. No real accomplishments were made. We had all this from the first 6 reports.
8. Little new value added to integrated assessment process. Most of time spent on old issues and red herrings. Much of discussion driven by special interests and not motivated by real scientific issues.
9. Meeting was well run and the facilitator kept things well focused.
10-13. No comments.

2. The highlight and most significant part of the meeting for me was:
1. Good interaction and focus on critical questions and good facilitation.
2. Coming to common understanding and agreement.
3. Here was less dissension and more consensus than I expected. We seemed to have settled 2 or 3 major points of contention. Also, high level of technical expertise and good group of participants.
4. The open discussion and the relatively strong consensus on agreements.
5. Hard to say.
6. Making meaningful progress toward the goals in an efficient and collegial manner.
7. Discussion on questions 1 and 2.
8. Hearing agriculture interests be frank about their activities, what they were affecting. Good synthetic thought by Cindy.
9. Reaching consensus/agreement on the questions.
10. Pretty well stayed on the data issues.
11-13. No comments.

3. If I could have changed anything about the meeting it would have been:
 1. To broaden the group to include a greater diversity of the user group.
 2. Have more of the skeptics included in the group.
 3. Linking supporting documentation to recommendations.
 4. The group was tired by question #3 and very tired by question #4. Not sure what could have been done.
 5. Fewer listeners and more scientists or managers with real data to share and discuss.
 6. To address relevant topics. To actually have crafted a response to the IA.
 7. Development of questions better focused on major criticisms of CENR reports and IA draft.
 8. Increased attendance by people who had disagreements with reports 1-6.
 9-13. No comments.
4. **Other Comments?**

1. Very well facilitated meeting.
2. I thought your mechanism of asking "Okay, so what data or information do you have to bring to bear to that comment?" was very effective. (i.e., Put up or shut up).
3. Great facilitation!
4. Meeting itself was well structured and well facilitated. Facilitator had energy and worked hard to ensure productive outcomes.
5. Great job in running the meeting!
6-13. No comments.
Final Participant List

Dr. Len Bahr
State Wetlands Authority Chairman
Executive Assistant for Coastal Activities Office of the Governor
625 N. 4th Street, Suite 1127
Baton Rouge, LA 70802
Ph: 225-342-3968
Fax: 225-342-5214
Lenb@dnr.state.la.us

James L. Baker
Iowa State University
Agricultural and Biosystems Engineering
219A Davidson
Ames, IA 50011-3080
Ph: 515-294-4025
Fax: 515-294-2552
jlbaker@iastate.edu

John Barrett
PO Box 97
Edroy, TX 78352
Ph: 512-368-2801
Fax: 512-368-2930
Jbtxag@aol.com

Victor Bierman
Limno-Tech
501 Avis Drive
Ann Arbor, MI 48108
Ph: 734-332-1200
Fax: 734-332-1212
vbierman@limno.com

Dr. Donald Boesch
Center for Environmental Science
University of Maryland
P.O. Box 775
Cambridge, MD 21613
Ph: 410-228-9250 x601
Fax: 410-228-3843
boesch@ca.umces.edu
Mike Burkart
USDA National Soil Tilth Laboratory
2150 Pammel Drive
Ames, IA 50011-4420
Ph: 515-294-5809
burkart@nstl.gov

Joe Engeln
State of Missouri
Department of Natural Resources
205 Jefferson Street
P. O. Box 176
Jefferson City, MO 65102
Ph: 573-751-9813
nrengej@mail.dnr.state.mo.us

Jim Giattina
Director, Gulf of Mexico Program Office
Building 1103, Room 202
Stennis Space Center, MS 39529-6000
Ph: 228-688-1172
Fax: 228-688-2709
giattina.jim@epa.gov

Donald Goolsby
US Geological Survey
Mail Stop 406
Denver Federal Center
Lakewood, CO 80225
Ph: 303-236-5950 x209
Fax: 303-236-5919
dgoolsby@usgs.gov

William L. Hohman
USDA/NRCS
Wildlife Habitat Management Institute
Department of Animal Ecology, ISU
124 Science II
Ames, IA 50011
Ph: 515-294-8591
Fax: 515-294-2234
whohman@iastate.edu
Bob Howarth
E311 Corson Hall
Cornell University
Ecology and Evolutionary Biology
Ithaca, NY
Ph: 607-255-6175
rwh2@cornell.edu

Doug Knauer
Wisconsin Department of Natural Resources Research Center
1350 Femrite Drive
Monona, WI 53716
Ph: 608-221-6354
Knaued@dnr.state.wi.us

Jim Lukens
National Center for Appropriate Technology
P.O. Box 3657
Fayetteville, AR 72702
Ph: 501-442-9824
jlukens@ncat.org

Dennis McKenna
Illinois Department of Agriculture
State Fairgrounds
Springfield, IL 62794
Ph: 217-785-4723
dmckenna@agr.state.il.us

Bruce Montgomery
Agronomy and Plant Protection Division
Minnesota Department of Agriculture
90 West Plato Boulevard
St. Paul, MN 55107-2094
Ph: 651-297-7178
Bruce.Montgomery@state.mn.us

Jonathan Pennock
University of Alabama
Dauphin Island Sea Lab
Ph: 334-861-7531
jpennock@jaguar1.usouthal.edu
Joe Schubauer-Berigan
U.S. Environmental Protection Agency
Nat’l Center for Environmental Assessment
26 W. Martin Luther King Drive
Cincinnati, OH 45268
Ph: 513-569-7734
Fax: 513-569-7916
schubauer-berigan.joseph@epa.gov

Timothy C. Strickland, PhD.
National Program Leader, Water Quality
USDA-CSREES
Mail Stop 2210
1400 Independence Ave., SW
Washington, D.C., 20250-2210
Ph: 202-205-5952
Fax: 202-401-1706
tstrickland@reeusda.gov

Mark Anderson
White House Office of Science and Technology Policy
manderso@ostp.eop.gov